Imagine a society where a new kind of virus is spreading, the Adamski Virus. Fear and caos are spreading faster than the virus it self because of the high spread rate (5). The media has also reported that each infected person, on average, infects 5 other people.

If a researcher discover a vaccine that can make people immune to  Adamski, how many people (proportionally to the population total) should be immune in order to stop Adamski outbreak?

Consider a random immunization scenario and a SIS infection model on a Random networks.
Tip: use <k²> = <k>² + <k> if necessary

A) 0.82;

B) 0.90;

C) 0.10;

D) 0.80;

E) None of the above;

Author: Raphael Adamski


Comentários

  1. Nice question, but there is one thing that is not clear. In the SIS model, we need beta and mu. The value of beta seems to be 5 in your question, but there is no way to know the value of mu. Or is there a way?

    ResponderExcluir
    Respostas
    1. Este comentário foi removido pelo autor.

      Excluir
    2. The mu is not necessary, you can replace mu/beta< k > with R0 (reproduction number) in the immunization threshold equation to solve the equation

      Excluir
    3. also you dont need to know mu if you know the spread rate λ=β/μ = 5

      Excluir
    4. Tem razão. Raphael, nesta última semana tivemos uma interessante conversa sobre uso de IA no ensino, e eu resolvi acrescentar um novo critério para aceitar uma questão: se algum LLM conseguir resolver a questão, ela está fora do blog oficial. E sua questão não passou neste teste.

      Excluir
    5. Que pena professor, pelo menos ajudei a melhorar as questões. Obrigado pelo feedback

      Excluir

Postar um comentário

Postagens mais visitadas deste blog